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A B S T R A C T

The selection of model architecture and hyperparameters has a significant impact on the diagnostic perfor-
mance of most deep learning models. Because training and evaluating the various architectures of deep learning
models is a time-consuming procedure, manual selection of model architecture becomes infeasible. Therefore,
we have proposed a novel framework for evolutionary deep neural networks that uses a policy gradient to guide
the evolution of the DNN architecture towards maximum diagnostic accuracy. We have formulated a policy
gradient-based controller that generates an action to sample the new model architecture at every generation
so that optimality is obtained quickly. The fitness of the best model obtained is used as a reward to update
the policy parameters. Also, the best model obtained is transferred to the next generation for quick model
evaluation in the NSGA-II evolutionary framework. Thus, the algorithm gets the benefits of fast non-dominated
sorting as well as quick model evaluation. The effectiveness of the proposed framework has been validated on
three datasets: the Air Compressor dataset, the Case Western Reserve University dataset, and the Paderborn
University dataset.
1. Introduction

With the advancement in modern computational technology, ma-
chine learning-based intelligent fault diagnosis has become an inte-
gral part of almost all industrial sectors. Intelligent fault diagnosis
refers to the preventive maintenance of rotating machines using ma-
chine learning-based data analysis and fault class detection (Nandi
et al., 2005; Siddique et al., 2005; Yin et al., 2014; Chen et al.,
2018b,a). Intelligent fault diagnosis, also termed as condition-based
maintenance (CBM), has gained very much attention from interdis-
ciplinary researchers. Different techniques such as statistical signal
processing (He et al., 2010; Yu et al., 2017; Fan et al., 2018), fuzzy
systems (Lei et al., 2008; Sharma et al., 2018), and deep neural net-
works (Su and Chong, 2007; Qi et al., 2017; Zhao et al., 2019) have
been investigated in various literature for the development of intelli-
gent diagnostic models. These intelligent systems aim to continuously
monitor specific changes in machine signatures, including but not lim-
ited to vibration, acoustics, temperature, pressure, and provide timely
notifications of anomalies or faults in various machine components (He
et al., 2010; Yu et al., 2017). Diagnostic models are usually developed
for laboratory machines. The developed model may fail to perform
well for similar other machine deployed for industrial application due
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to different operating conditions. Running an industrial machine with
a real-time load is an uneconomical task or sometimes impossible,
especially in a faulty state, to acquire the diagnostic data. Therefore,
the development of an intelligent fault diagnostic model for such
machines faces the challenges of (i) training deep learning models with
limited or unavailability of labeled data and (ii) selection of the best
model architecture to avoid overfitting or underfitting due to limited
availability of the training samples and to ensure reliable performance
with the test samples.

To meet above challenges, several methodologies have been intro-
duced such as cross-domain intelligent fault diagnosis with unavail-
ability or limited availability of labeled data. For example, domain-
adversarial training of neural networks (Ganin et al., 2016; Lu et al.,
2017; Li et al., 2023b), cross-domain fault diagnosis under limited
availability of labeled dataset (Li et al., 2019; Guo et al., 2019; Sharma
and Verma, 2021). A quick learning mechanism solves the problem
of training the deep learning model with limited availability of la-
beled target samples using net2net transformation followed by domain
adaptation-based fine-tuning (Sharma and Verma, 2021). However, the
diagnostic performance of all these methods is greatly affected by the
selection of the deep neural network (DNN) model architecture.
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Therefore, our main objective is to investigate and develop an algo-
rithm that can obtain a best-performing model for fault diagnosis with
the dataset under variable operating conditions of industrial machines.
There are an arbitrarily number of settings in every learning model that
are orthogonal to the learning model itself (i.e., they live outside the
model training process) but greatly affect the performance of the model.
These parameters are known as hyper-parameters, which include learn-
ing rate, regularization parameters, and the model architecture design.
Model architecture design or selection is one of the important aspects
of hyper-parameter optimization, most popularly known as network
architecture search (NAS) (He et al., 2021; Dudziak et al., 2020; Liu
et al., 2022). NAS methods are mainly categorized as: (i) random search
and grid search (Bergstra and Bengio, 2012), (ii) surrogate model-
based optimization (Hutter et al., 2011; Fan and Wang, 2023; Wöhrle
et al., 2023; Lu et al., 2022), (iii) reinforcement learning (Baker et al.,
2016; Zoph and Le, 2016; Jaafra et al., 2019; Wang et al., 2020;
Li et al., 2023a), (iv) genetic algorithm (Loghmanian et al., 2012;
Wang et al., 2019; Sun et al., 2019, 2020, 2021b; Sharma and Verma,
2022; Qiu et al., 2023), (v) gradient descent (Liu et al., 2019, 2023),
and (vi) hybrid algorithms (Yang et al., 2020). In the aforementioned
methods, the biggest challenge for architecture search is the model
evaluation because of the complex training mechanism for most of
the DNN models (He et al., 2021). In genetic algorithm-based NAS
methods (Loghmanian et al., 2012; Wang et al., 2019; Sun et al., 2019,
2020; Sharma and Verma, 2022), the hyper-parameters of the model
to be optimized are encoded as an individual (chromosomes). A set of
such individuals (population) is evaluated at each generation to evolve
and find the best model. The overall efficacy of the evolution process
depends on (i) the fitness evaluation strategy, (ii) the sorting, and (iii)
the crossover and mutation strategies. The fitness evaluation involves
the training and validation of the individuals (models) for the given
dataset, which is a time-consuming process for deep neural networks.
For example, regularized evolution of the image classifier (Real et al.,
2019) with 450 K40 GPUs takes 3150 GPU days. Therefore, fault
diagnosis with these NAS methods becomes infeasible as most industrial
applications require a faster mechanism to quickly search for and train
a suitable architecture of DNN.

Architecture optimization using fast non-dominated sorting genetic
algorithm II (NSGA-II Deb et al., 2002) gets the benefits of a faster
sorting method and therefore faster evolution (Lu et al., 2021). How-
ever, this method also requires the training and testing of individuals at
each generation from scratch, and therefore becomes a time-consuming
process for fault diagnosis applications. EvoN2N (Sharma and Verma,
2022) uses the concept of knowledge transfer for the evaluation of fit-
ness in the framework based on NSGA-II. Quick fitness evaluation with
fast NSGA-II makes the algorithm faster compared to state-of-the-art
evolutionary NAS methods. This method uses crossover and mutation-
based exploration and exploitation to find the best DNN architecture in
the given search space. Similar to conventional genetic algorithms, this
process requires a large number of generations to converge.

Therefore, this research work aims to propose a novel solution for
(i) the development of the best-performing diagnostic model under
limited training sample availability and (ii) reducing the computational
cost with faster convergence of the NSGA-II-based model architecture
search. We define fault classification accuracy and number of trainable
parameters as the search objectives for model architecture optimiza-
tion. To maximize the classification accuracy and minimize the number
of total trainable parameters, We introduce a guided sampling-based
evolution that makes convergence faster by exploiting the search space
with the help of a reward-based controller instead of conventional
crossover and mutation.

The key contribution to this work is guided sampling-based evolu-
tion of DNN architecture which includes following components:

(i) The mean–variance-based mutation to exploit the search space
to obtain optimality.
2

Fig. 1. SAE with softmax classifier (DNN model: 𝛹 ).

(ii) The reward-based policy gradient controller to update mean
and variance terms which guides the sampling of the DNN
architecture to reach the optimality faster.

(iii) The quick model evaluation strategy is based on the knowledge
transfer mechanism by transferring the knowledge of the best
model obtained at every generation.

The remainder of the article is organized as follows. Section 2 briefly
discusses the related works and theoretical background. Section 2.5
defines the objective problem. Section 3 explains the implementation
details of the proposed framework of GS-EvoN2N. Section 4 discussed
the effectiveness of the proposed framework for fault diagnosis under
various machine load and operating conditions. And finally, Section 5
concludes the whole paper.

2. Related works and theoretical background

2.1. Deep Neural Network (DNN)

The deep neural network (DNN): a multi-layered neural network
is the most popular technique for pattern recognition via non-linear
feature transformation in multiple stages (Hinton and Salakhutdinov,
2006). From the training point of view, DNN can be considered as two
parts: Stack of a given number of autoencoders (also called stacked
autoencoder: SAE) (Bengio et al., 2007) and a classifier usually softmax
classifier as output layer. First, greedy-layer unsupervised training is
used to train each of the auto-encoder (AE) in the SAE. Then, the SAE
stacked with the classifier at the end layer is fine-tuned using a labeled
training dataset. The SAE with softmax classifier (DNN model 𝛹 ) is
depicted in Fig. 1.

2.2. Intelligent fault diagnosis

Recently, with the advent of advanced machine learning techniques
and the availability of fast computational resources, the data-driven
intelligent fault diagnosis method has gained much popularity, Nandi
et al. (2005), Siddique et al. (2005), Chen et al. (2018b), Yin et al.
(2014) and Li et al. (2023b,c). In these methods, various machine learn-
ing techniques are utilized to learn the specific signature of recorded
signals like current, vibration, temperature, etc., and thereafter iden-
tify the existence of a machinery fault using the test samples. Neu-
ral network (NN) (Su and Chong, 2007), Support vector machine
(SVM) (Widodo and Yang, 2007; Yan and Jia, 2018), and random forest
(RF) classifier (Chen et al., 2018a) have been very effectively used for
intelligent fault diagnosis and have been proved to be the baseline
method for pattern recognition. But the diagnostic performances by
these methods are reduced due to high sparsity and low-quality features
in the dataset (Juan Jose et al., 2016). The intelligent fault diagnosis
using deep learning methods has gained much attention due to its
capability of multi-scale hierarchical feature transformation and large
dimensional data handling, Qi et al. (2017), Zhao et al. (2019) and Guo
et al. (2019). However, using a deep neural network for fault diagnosis
faces a major challenge of training from scratch for every new operating
condition of the machines. The recent trend of using deep transfer
learning methods for domain adaptation has been very effective for
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Fig. 2. Flow Diagram of guided sampling based NSGA-II.

fault diagnosis under changeable operating conditions (Pan et al., 2011;
Long et al., 2014; Lu et al., 2017; Wen et al., 2019; Li et al., 2019; Wei
et al., 2021; Sharma and Verma, 2021). Li et al. (2023b) introduces
a deep adversarial network for remaining useful life (RUL) prediction.
It utilizes global feature extraction and adversarial learning to ensure
accurate RUL predictions, even when sensors are unreliable and prone
to malfunction. However, the diagnosis performance by these methods
is very much affected by the selection of the architecture of the deep
neural network and the other hyper-parameters.

2.3. Neural Architecture Search (NAS)

The main objective of NAS methods is to obtain the optimal archi-
tecture in a given search space with the best model performance (He
et al., 2021; Liu et al., 2022; Loni et al., 2018, 2020, 2022, 2019).
There are three important aspects of the NAS methods: (i) formula-
tion of the search space, (ii) architecture optimizer, and (iii) model
evaluation. Formulation of search space defines the design format for
the model architecture. It can be categorized into four groups: (i) cell-
based (ii) entire-structured, (iii) morphism-based, and (iv) hierarchical
search space. The most important aspect of NAS methods is the model
evaluation as it is computationally very expensive to train each model
during the search process and evaluate on the unseen dataset. To
accelerate the evolution, various mechanism have been suggested for
the model evaluation (He et al., 2021; Real et al., 2019; Zoph et al.,
2018; Hundt et al., 2019; Hutter et al., 2011; Kandasamy et al., 2018;
Bergstra et al., 2011; Pham et al., 2018). Kandasamy et al. (2018)
suggested learning the curve extrapolation for the model performance
evaluation instead to train and evaluate the actual architecture. Pham
et al. (2018) proposed the parameter sharing method for faster training
and evaluation of the model architecture.

Another important aspect of NAS methods is the architecture opti-
mizer (AO). The objective automatic AO is to automatically guide the
model architecture search in a direction to get the best suitable model
for a given dataset. The AO methods adopted by various researchers
can be categorized as (i) random search (RS) (ii) grid search (GS),
(iii) surrogate model-based optimization (SMBO), (iv) gradient descent
(GD), (v) reinforcement learning (RL), (vi) genetic algorithms (GA),
and (vii) hybrid methods. In the RS method, the search optimizer
tries different architecture randomly from the defined search space
(Bergstra and Bengio, 2012), whereas, in GS, the search method uses
a grid to sample and evaluate the model architecture (Hundt et al.,
2019). SMBO methods use Basian optimization (Hutter et al., 2011;
Kandasamy et al., 2018; Bergstra et al., 2011) or neural networks (Luo
et al., 2018) as a surrogate model of the objective function to obtain
the most promising solution (model architecture). Gradient descent-
based method uses softmax function to find the optimal architecture
3

over a continuous and differentiable search space (Liu et al., 2019). In
RL-based NAS (Baker et al., 2016; Zoph and Le, 2016), a controller
(usually, a recurrent neural network) generate an action to sample
a new architecture. The observation (state) & the reward from the
environment is used to update the controller policy to generate new
architecture samples. Here, the training & validation process of the
sampled neural network is treated as the environment that returns back
the validation accuracy. GA-based NAS (Loghmanian et al., 2012; Wang
et al., 2019; Sun et al., 2019, 2020, 2021a; Lu et al., 2021), use heuristic
search to find the best performing architecture over a given search
space. In these methods, heuristically sampled neural architectures are
trained and evaluated using the convention neural training methods,
and the performance metrics are used as fitness for evolution to obtain
the optimal architecture. The main challenge of these methods is the
fitness evaluation of the individual model. All of these methods of
AO have their own merits and demerits. The hybridization of two of
the above methods may give a significant improvement in the search
efficiency, called the hybrid method of AO (Chen et al., 2019; Yang
et al., 2020; Sun et al., 2019).

2.4. Policy gradient

Policy gradient (PG) is a tool to optimize the controller policy for
reinforcement learning algorithm (Williams, May 1992; Sutton and
Barto, 2018). The controller policy is the parameterized function that
defines the learning agent’s way to act on the environment to get
maximum reward Fig. 2. The reward defines the good or bad effect
of the action taken by the policy towards the fulfillment of the optimal
objective. The policy may be defined as a deterministic or stochastic
process. In deterministic policy, action is generated for every state
of a deterministic environment, whereas stochastic policy generates a
probability distribution of action for given states of the environment.
Let the parameter vector be 𝜃𝑡, then the parameterized function policy
is represented as 𝜋𝜃𝑡 (𝑎𝑡|𝑠𝑡), where 𝑎𝑡 and 𝑠𝑡 represent action and state at
given time 𝑡. Let the action 𝑎𝑡 produces reward 𝑟𝑡+1 from the environ-
ment, then the trajectory of state, action and reward can be represented
as

(

(𝑠0, 𝑎0, 𝑟1), (𝑠1, 𝑎1, 𝑟2),… .(𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1)
)

. The policy parameter 𝜃𝑡 can be
updated using policy gradient as

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑡∇𝜃𝑡 (𝜃𝑡) (1)

where 𝜂𝑡 denotes the learning rate at time 𝑡, usually a constant real
number. ∇𝜃𝑡 (𝜃𝑡) denotes the policy gradient and can be calculated
using expected of cumulative reward 𝑈𝑡 over the time 𝑡 as follows.

∇𝜃𝑡 (𝜃𝑡) = ∇𝜃𝑡𝐸
[

𝑈𝑡
]

= ∇𝜃𝑡 ∫𝑡
𝜋(𝜏)𝑟(𝜏)𝑑(𝜏) (2)

= 𝐸
[

𝑟(𝜏).∇𝜃𝑡 log𝜋𝜃𝑡 (𝜏)
]

(3)

∇𝜃𝑡 (𝜃𝑡) =
1
𝑁

𝑁
∑

𝑘=1
𝑟(𝑘)

( 𝑇
∑

𝑡=1
∇𝜃𝑡 log𝜋𝜃𝑡

(

𝑎𝑡|𝑎𝑡−1∶1; 𝜃𝑡
)

)

(4)

2.5. Problem statement

Let the training dataset, validation dataset, and test dataset are
𝑡𝑟 =

(

𝐗𝑡𝑟, 𝐲𝑡𝑟
)

, 𝑣𝑎𝑙 =
(

𝐗𝑣𝑎𝑙 , 𝐲𝑣𝑎𝑙
)

, and 𝑡𝑒 =
(

𝐗𝑡𝑒, 𝐲𝑡𝑒
)

, respectively
where 𝐗 ∈ ℜ(𝑛𝑠×𝑛𝑓 ) be the input data with 𝑛𝑠 samples & 𝑛𝑓 features and
𝐲 ∈ ℜ𝑛𝑠 be the corresponding output label. The objective of optimal
DNN architecture search for fault classification is mathematically be
formulated as

𝛹 † = 
(

𝑃 , 𝑡𝑟, 𝑣𝑎𝑙) (5)

�̂�𝑡𝑒 = 
(

𝛹 †, 𝑋𝑡𝑒) (6)

where (.) denotes the optimization function to get the best model 𝛹 †

with optimal parameters for the training dataset and  (.) is the feed-
forward DNN function which predicts the fault class �̂�𝑡𝑒 for the test data
𝐗𝑡𝑒.
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Algorithm 1 GS-EvoN2N: The Main Framework
Input: 𝑡𝑟 &𝑣𝑎𝑙 = training & validation datasets, 𝑛𝑅 &ℎ𝑅 = Maximum depth & width of the DNN respectively.
Output: 𝛹 † = best model after the termination or last generation of the evolution.

1: 𝑡 ⟵ 0 //Set generation count (𝑡) = 0;
2: [𝑚, 𝜎] ⟵ Compute mean and variance from allowable range for depth (𝑛𝑅) and width (ℎ𝑅) of the DNN.
3: 𝑃0 ⟵ GuidedPop(𝑚, 𝜎,𝑁𝑝) //Generate 𝑁𝑝 number of populations using Algorithm 2.
4: 𝛹0 ⟵ Initialize weight matrices of the first model (𝑃0{1}) by small random numbers.
5: 𝛬, 𝛹 †

1 ⟵ FitnessEval(𝑃0,𝑡𝑟,𝑣𝑎𝑙 , 𝛹0) //Evaluate fitness of all individuals in 𝑃0 using the Algorithm 3.
6:  ⟵ 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝛬1) //Assign rank using non-dominated sorting (Deb et al., 2002).
7: 𝑃1 ⟵ 𝑆𝑒𝑙𝑒𝑐𝑡𝑃 𝑎𝑟𝑒𝑛𝑡𝑠(𝑃0, ) //Select parents by binary tournament selection, Deb et al. (2002).
8: 𝛬𝑠{1} ⟵ 𝛬 //Store the fitness History.
9: [𝑚, 𝜎] ⟵ UpdateMeanVar(𝑃1, 𝛬𝑠) //Update mean and variance term using the Algorithm 4.

10: 𝑄1 ⟵ CrossoverMutation(𝑃1, 𝑚, 𝜎)) //Apply crossover and mutation on 𝑃 using Algorithm 5.
11: 𝑡 ⟵ 𝑡 + 1 //Update the generation count.
12: while termination condition is false do
13: 𝑆𝑡 ⟵ (𝑃𝑡 ∪𝑄𝑡) //Combine the parent population (𝑃𝑡) & the child population (𝑄𝑡).
14: 𝛬, 𝛹 †

𝑡+1 ⟵ FitnessEval(𝑆𝑡,𝑡𝑟,𝑣𝑎𝑙 , 𝛹 †
𝑡 ) //Evaluate fitness of all individuals in 𝑆𝑡 using the Algorithm 3.

15:  ⟵ 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝛬) //Assign rank by non-dominated sorting of fitness 𝛬, Deb et al. (2002).
16:  ⟵ 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑆𝑡,, 𝛬) //Find crowding distances of individuals in population set 𝑆𝑡, Deb et al. (2002).
17: 𝑃𝑡+1 ⟵ 𝑆𝑒𝑙𝑒𝑐𝑡𝑃 𝑎𝑟𝑒𝑛𝑡𝑠𝐵𝑦𝑅𝑎𝑛𝑘𝐷𝑖𝑠𝑡(𝑆𝑡,, 𝛬) //Select parents by crowding distance and rank, Deb et al. (2002).
18: 𝛬𝑠{𝑡 + 1} ⟵ 𝛬 //Store the fitness History.
19: [𝑚, 𝜎] ⟵ UpdateMeanVar(𝑆𝑡, 𝛬𝑠) //Update mean and variance term using the Algorithm 4.
20: 𝑄𝑡+1 ⟵ CrossoverMutation(𝑃𝑡+1, 𝑚, 𝜎) //Apply crossover and mutation on 𝑃 using Algorithm 5.
21: if Termination condition is true then
22: Exit
23: else
24: 𝑡 ⟵ 𝑡 + 1 //Update the generation counter.
25: end if
26: end while
27: Return: Best Model ∶ 𝛹 † ⟵ 𝛹 †

𝑡+1 //Best model of the last generation.
Fig. 3. Variable-length gene encoding strategy.

3. Proposed framework

In this section, the proposed framework of guided sampling-based
evolutionary DNN (GS-EvoN2N) is described in detail. The Fig. 2
shows the schematic of the workflow of GS-EvoN2N. In the figure,
DNN architecture optimization in the NSGA-II framework constitute the
environment. The fitness of the best model is termed as the reward.
The sorted fitness of all the individuals in the population is treated
as the state of the controller. The controller policy 𝜋𝜃𝑡 generates an
action 𝑎𝑡 = [𝑚𝑡, 𝜎𝑡], where 𝑚𝑡 and 𝜎𝑡 be the mean and variance for the
sampling of DNN architecture at generation 𝑡. Given the training dataset
𝑡𝑟 and the validation dataset 𝑣𝑎𝑙, the algorithmic steps for the GS-
EvoN2N is presented in Algorithm 1. Our contributions are highlighted
in Algorithm 1 and are further discussed in the following sections.

3.1. Population sampling using mean and variance

AO includes depth and width variation in a defined search space.
The real-coded gene encoding strategy is adopted to encode the depth
4

as the number of genes (length of a chromosome) and the number of
nodes in a hidden layer as the value of a gene as shown in Fig. 3. Let
𝑛𝑅 &ℎ𝑅 be the maximum depth and width of the DNN, then the search
space is defined as [1 𝑛𝑅] & [1 ℎ𝑅] for depth and the width variations.
The mean and variance 𝑚 = [𝑚1, 𝑚2] & 𝜎 = [𝜎1, 𝜎2] are initialized as
𝑚1 = (1 + 𝑛𝑅)∕2, 𝑚2 = (1 + ℎ𝑅)∕2 and 𝜎1 = (𝑛𝑅 − 1)∕2, 𝜎2 = (ℎ𝑅 − 1)∕2.

Algorithm 2 GuidedPop: Population Sampling
Input: 𝑁 = Population size, 𝑚 = [𝑚1, 𝑚2] = mean &

𝜎 = [𝜎1, 𝜎2] = variance.
Output: 𝑃 = Population with 𝑁 chromosomes.

1: 𝐻 ⟵ generate 𝑁 Gaussian numbers with 𝑚1 and 𝜎1.
2: for p = 1 : N do
3: ℎ ⟵ 𝐻(𝑝) : depth of 𝑝𝑡ℎ chromosome
4: 𝑡𝑚𝑝 ⟵ generate ℎ Gaussian numbers with 𝑚2 and 𝜎2.
5: 𝑃 {𝑝} ⟵ convert all numbers in 𝑡𝑚𝑝 to nearest integers.
6: end for
7: Return 𝑃

3.2. Fitness evaluation

Fast model evaluation is the most important requirement for NAS,
especially when the evolutionary algorithm is used as an AO strategy.
If the best model at a generation is transferred for initialization of
the DNN weight matrices in the next generation, it makes the training
and evaluation of the models faster. The quick learning mechanism
suggested in Sharma and Verma (2021) is adopted for fitness evalu-
ation, as shown in Fig. 4. For the first generation, DNN models are
randomly initialized and trained using the limited-Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) (Nocedal and Wright, 2006) algorithm. For
next generation and later, the best model obtained is transformed
(Fig. 4) to initialize the models followed by fine-tuning with the LBFGS
algorithm for a few iterations only. If a model 𝛹 𝑡 at generation 𝑡th
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Fig. 4. Fitness evaluation strategy.

has weight matrix 𝑊 𝑡, the classification loss  for a 𝐶 problem can
be defined in term of [𝑤, 𝑏] ∈ 𝑊 𝑡 as

 (𝑊 𝑡) = 1
𝑛𝑠

⎡

⎢

⎢

⎣

𝑛𝑠
∑

𝑘=1

𝐶
∑

𝑖=1
𝐼[𝑦𝑘 = 𝑐𝑖] log

𝑒(𝑤
𝑇
𝑖 𝑓 (𝑥𝑝)+𝑏𝑖)

∑𝐶
𝑖=1 𝑒

(𝑤𝑇
𝑖 𝑓 (𝑥𝑝)+𝑏𝑖)

⎤

⎥

⎥

⎦

(7)

where, 𝑓 (𝑥) = 𝛷(𝑤𝑥+𝑏) is the h-level features representation of DNN, 𝑦𝑘
be the output label of the 𝑘th data sample and 𝑐𝑖 denotes the 𝑖th class.
The classification accuracy (𝐶𝐴) of fine-tuned model for the validation
data is returned as the fitness of that model.

Algorithm 3 FitnessEval: Fitness Evaluation
Input: 𝑃 = Population with population size 𝑁𝑝,

(𝑡𝑟,𝑣𝑎𝑙) = Training & validation data.
Output: 𝛬 = Fitness matrix and 𝛹 † = Best model.

1: 𝑡 ⟵ current generation
2: say 𝛹 †

𝑡 ⟵ 𝛹 † // best model at current generation.
3: for 𝑝 = 1 ∶ 𝑁𝑝 do
4: 𝛹 𝑝

𝑡 ⟵ N2N(𝛹 †
𝑡 ) // Transform 𝛹 †

𝑡 to 𝛹 𝑝
𝑡 ∈ 𝑃 using N2N

transformation as depicted in step-1 of Fig. 4.
5: Fine-tune the model (𝛹 𝑝

𝑡 ) on 𝑡𝑟 to minimize Eq. (7).
6: 𝛬(𝑝) ⟵ Find 𝐶𝐴 of 𝛹 𝑝

𝑡 on dataset 𝑣𝑎𝑙.
7: end for
8: 𝛹 †

𝑡 ⟵ Best model // Find the model with maximum 𝐶𝐴 and
minimum number of model parameters.

9: Return 𝛬, 𝛹 †
𝑡

3.3. Update mean and variance using PG

Mean (𝑚) and variance (𝜎) terms are used for sampling of a new
population as illustrated in Section 3.1. Here, we design a PG-based
update laws for 𝑚& 𝜎 such that the best fitness (max(𝛬)) is maximized.
At any generation 𝑡, max(𝛬) is termed as reward, 𝑎𝑡 = [𝑚, 𝜎] is termed
as action, and weighted average of fitness (𝛬) is termed as state of
the policy. Thus, the policy generates [𝑚𝑇 , 𝜎𝑇 ] to guide the evolution
for faster and better convergence. For the design simplification, let us
assume that the action is generated by a deterministic policy as

𝑎𝑡 = 𝑓 (𝜃𝑡) =
1

1 + 𝑒−𝜃𝑡
(8)

where, policy parameter 𝜃𝑡 is selected such that it controls 𝑚 ∈ ℜ2

(mean of depth and width of DNN) and 𝜎 ∈ ℜ2 (variance for depth
5

and width of DNN). The parameter 𝜃 is updated by the policy gradient
in (1) calculated using gradient of expected total reward 𝑈𝑡 derived in
(4). The total cumulative reward is calculated using fitness matrix 𝛬𝑡
at generation 𝑡 as in (9).

𝑈𝑡 =
𝑡

∑

𝑖=1

max(𝛬𝑖) − max(𝛬𝑖−1)
max(𝛬𝑖−1)

(9)

The algorithmic steps for the implementation of policy gradient based
update of 𝑎𝑡 = [𝑚, 𝜎] at generation 𝑡 is summarized in Algorithm 4.

Algorithm 4 UpdateMeanVar: Update 𝑚 & 𝜎 using PG
Input: 𝑃𝑡 = Current population, 𝛬 = Fitness matrix,

𝑎𝑡−1 = [𝑚, 𝜎] = Initial mean & variance term.
Output: 𝑎𝑡 = [𝑚, 𝜎] = Updated mean & variance.

1: 𝑁 = Number of models in 𝑃𝑡, 𝛼 = Learning rate
2: �̄� ⟵ Compute average depth of models in 𝑃𝑡
3: 𝛺 = [𝜔𝑝]𝑁𝑝=1 //Generate a set of weights 𝜔𝑝 such that ∑𝑁

𝑝=1 𝜔𝑝 = 0
and 𝜔1 > 𝜔2 > .... > 𝜔𝑁

4: 𝛬𝑠𝑜𝑟𝑡𝑒𝑑
𝑡 , 𝑖𝑑𝑥 = sort(𝛬𝑡, ‘descending’)

5: 𝑃𝑡 ⟵ Sort 𝑃𝑡 according to 𝑖𝑑𝑥.
6: 𝑛𝑝 = no. of hidden layers (depth) in 𝑝𝑡ℎ model.
7: 𝛿𝑝 = max(𝐻𝑝)−min(𝐻𝑝) //𝐻𝑝 = set of nodes in hidden layers of

𝑝𝑡ℎ model
8: if 𝑡 ≤ 1 then
9: 𝑚 =

∑𝑁
𝑗=1

[

𝑛𝑝𝜔𝑝
1
𝑛𝑝

∑𝑛𝑝
𝑘=1 ℎ𝑘𝑝𝜔𝑝

]

//ℎ𝑘𝑝 ∈ 𝐻𝑝.

10: 𝜎 =
∑𝑁

𝑗=1
[

(�̄� − 𝑛𝑝)𝜔𝑝 𝛿𝑝𝜔𝑝∕2
]

11: else
12: 𝜃𝑡−1 = ln

[

𝑎𝑡−1∕(1 − 𝑎𝑡−1)
]

13: 𝑈𝑡 ⟵ Compute cumulative reward using (9).

14: 𝑠𝑚 =
∑𝑁

𝑗=1

[

𝑛𝑝𝜔𝑝
1
𝑛𝑝

∑𝑛𝑝
𝑘=1 ℎ𝑘𝑝𝜔𝑝

]

15: 𝑠𝜎 =
∑𝑁

𝑗=1
[

(�̄� − 𝑛𝑝)𝜔𝑝 𝛿𝑝𝜔𝑝∕2
]

16: 𝑠𝑡 = [𝑠𝑇𝑚 𝑠𝑇𝜎 ]
17: 𝜃𝑡 ⟵ 𝜃𝑡−1 + 𝛼 ∗ 1

𝑁
∑𝑁

𝑘=1 𝑈𝑡𝐸[∇ log𝜋𝜃(𝑠𝑡|𝑎𝑡−1; 𝜃)]
18: 𝑎𝑡 = 1∕

(

1 + 𝑒−𝜃𝑡
)

19: end if
20: Return 𝑎𝑡

3.4. Crossover and mutation

For the optimal search of the network architecture, a combina-
tion of exploration and exploitation strategies is adopted. The guided
sampling-based generation of new population exploits the search space
to force the evolution towards maximum accuracy. To avoid local
convergence, 𝑁 number of individuals are sampled using 𝑚 and 𝜎 based
on Gaussian distribution, and also 𝑁 number of parent populations are
selected using crowding distance and rank from the current generation.
After that, the two populations are merged to create a double-sized mat-
ing pool. Now, the two-step crossover operator introduced in Sharma
and Verma (2022) is applied. The two steps are (i) single point depth
crossover (SPDC) for depth variation and (ii) common depth simulated
binary crossover (CDSBC) for gene value (width) alteration. The two-
step crossover method is depicted in Fig. 5. The whole process of
offspring generation is provided in Algorithm 5:

4. Experimental results and discussion

The efficacy of the proposed framework of GS-EvoN2N is demon-
strated on fault diagnosis dataset under different operating conditions
taken from (i) Air compressor fault data (Verma et al., 2016), (ii)
Paderborn University (PBU) bearing fault data (Lessmeier et al., 2016),
and (iii) CWRU bearing fault data (Smith and Randall, 2015).
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Algorithm 5 Offspring Generation: Crossover and Mutation
Input: 𝑃 = Parent population, 𝑝𝑐 = Crossover probability,

(𝑚, 𝜎) = mean & variance term for sampling.
Output: 𝑄 = Offspring population.

1: 𝑄 ⟵ GuidedPop(𝑚, 𝜎,𝑁, 𝑛𝑅, ℎ𝑅) //Generate 𝑁 offspring popula-
tions using Algorithm 2.

2: 𝐼𝑐 = generate random indices of 𝑝𝑐 ∗ 100% members from 𝑃 .
3: for 𝑖 ∈ 𝐼𝑐 do
4: Select 𝑃1 = 𝑃 {𝑖} & 𝑃2 = 𝑄{𝑖}.
5: Find lengths (𝑛1, 𝑛2) of 𝑃1, 𝑃2
6: Set a point ℎ < min(𝑛1, 𝑛2) on 𝑃1, 𝑃2.
7: 𝐶1, 𝐶2 ⟵ SPDC of 𝑃1, 𝑃2 at point ℎ (as depicted in step-1

of Fig. 5)
8: �̄�1, �̄�2 ⟵ CDSBC for genes of the common depth portion of

𝐶1, 𝐶2 as depicted in step-2 of Fig. 5.
9: Replace 𝑄{𝑖} by �̄�1 or �̄�2.

10: end for
11: Return 𝑄

4.1. Experimental setup

4.1.1. Air compressor fault data (Verma et al., 2016)
The air compressor data contains acoustic signal recorded on single

stage reciprocating type air compressor driven by an 5 hp induction
motor installed at the workshop, EE Department, IIT Kanpur. Data
were recorded in eight different cases: healthy and seven different
faulty states of the air compressor valve. Therefore, the dataset has
8 classes: (i) Healthy (H), (ii) Leakage Inlet Valve (LIV), (iii) Leakage
Outlet Valve (LOV), (iv) Non-Return Valve (NRV), (v) Piston Ring (PR),
(vi) Flywheel (F), (vii) Rider Belt (RB), and (viii) Bearing (B). For
each class, 225 measurements were taken with 50k samples in each
measurement.

4.1.2. PBU bearing fault data (Lessmeier et al., 2016)
PBU bearing fault data is the collection of time-series signals

recorded on electrical machine operating under wide variation of shaft
load and rotational speed. The four Load and speed settings (LS) are
LS1: N09_M07_F10 (speed = 900 rpm, torque = 0.7 N m & radial force
= 1000 N), LS2: N15_M01_F10 (speed = 1500 rpm, torque = 0.1 N
m & radial force = 1000 N), LS3: N15_M07_F04 (speed = 1500 rpm,
torque = 0.7 N m & radial force = 400 N), and LS4: N15_M07_F1gr60
(speed = 1500 rpm, torque = 0.7 N m & radial force = 1000 N).
Total of 32 experimentation with 6 healthy, 12 artificially damaged,
and 14 damaged by long run accelerated tests were conducted to
record current, vibration signal, radial forces, torque, and bearing
temperature. The recorded signals contains two types of faults: inner
race (IR) fault and outer race (OR) fault.

4.1.3. CWRU bearing fault data (Smith and Randall, 2015)
The CWRU bearing fault data provided by Case Western Reserve

University (CWRU) has been a widely used benchmark dataset for
bearing fault diagnosis. It contains vibration signals recorded at the
drive end (DE) and the fan end (FE) of the artificially seeded bearing
with inner race fault (IR), outer race (OR), and rolling element ball (B)
faults of variable fault diameters (F.D.) (from 0.007 to 0.028 in.). The
bearing test rig setup details can be found in Smith and Randall (2015).

4.2. Segmentation and data processing

The recorded time-series signals contain a huge number of samples
which is not suitable for training the DNN. To make the dimension of
the time-series signals compatible with the DNN, we adopt a segmenta-
tion rule with the segment length of approximately 1∕4th of data points
recorded per revolution. Here, we have selected segmentation lengths
6

Fig. 5. Two-steps crossover for chromosomes with different length.

of 100, 200, & 400 for the CWRU dataset, Air compressor dataset,
and PBU dataset respectively. Also, the time-series signals are usually
unstructured and not to the scale. Therefore, we have applied the min–
max normalization technique to scale down the dataset to [0, 1]. The
min–max normalization also removes the effect of outlier points. If for
some cases, the outlier points carry some important information, then
the z-score minimization technique may be used to make the dataset
well-structured (Sharma and Verma, 2021).

4.3. Dataset preparation

For the study of fault diagnosis with the proposed GS-EvoN2N, we
prepare the training, the validation, & the testing dataset under various
operating conditions described below.

Case-1 (T1): From Air Compressor Dataset, 7 different cases of binary
classes and one case of multi-class diagnosis are investigated as listed in
Table 1. For each class, 4 measurement files (having 50k samples/file)
are merged to create a sample of size 1000 × 200 per class taking 200
points as segment length.

Case-2 (T2): From CWRU FE Dataset, multi-class diagnosis with
class name healthy (H), inner race (IR), outer race (OR), and ball
element (B) are considered under different load (1, 2, & 3 hp) conditions
and different fault diameters (FD) (7, 14, & 21 mil). For each FD (for
example, 7 mil), dataset from all three load conditions are prepared.
Thus, the fault diagnosis on total of 9 cases are presented as listed in
Table 2.

Case-3 (T3 & T4): From PBU Dataset, two different cases are
considered (i) T3: artificially damaged bearing fault and (ii) T4: bearing
fault due to long accelerated test. In both cases, multi-class diagnosis
with three classes namely H-OR-IR is studied under four load settings
(LS) as listed in Table 3.

Now for the training, the validation, & the testing, each of the above
dataset is split into three portions: 64% train (𝑡𝑟), 20% test (𝑡𝑒), and
16% validate (𝑣𝑎𝑙) datasets.

4.4. Implementation details

For the implementation of the proposed framework of GS-EvoN2N,
the initial parameters are selected as: population size (𝑁) = 100,
crossover probability (𝑃𝑐) = 0.5, and the maximum number of genera-
tions is set to very high usually at 50. Also, the termination criteria
are set as either the validation accuracy reaches 100% or it does
not change continuously for 3 generations. The allowable ranges for
the variation of depth and width are selected as 𝑛𝑅 ∈ [1, 10] and
ℎ𝑅 ∈ [10, 400] respectively. The learning rate 𝛼 = 0.1. The GS-
EvoN2N framework is applied to the training dataset and the best
model obtained is tested for the test dataset under all cases (T1, T2,
T3, & T4) described in Section 4.3. The classification accuracies (𝐶𝐴)
are tabulated in Tables 1, 2, & 3.
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Table 1
Air compressor dataset (T1): Diagnostic performance in term of classification accuracy.

Class SVM (Widodo
and Yang,
2007)

DNN (Qi et al.,
2017)

DTL (Wen
et al., 2019)

DAFD (Lu
et al., 2017)

N2N (Sharma and Verma, 2021) EvoDCNN (Sun
et al., 2020)

EvoN2N
(Sharma and
Verma, 2022)

GS-EvoN2N

W. D. A. D. A.
H-LIV 99.75 96.25 99.00 99.75 99.50 99.75 100.00 100.00 100.00
H-LOV 98.25 95.75 99.25 99.66 99.25 99.25 99.75 99.75 100.00
H-PR 98.25 93.25 93.30 98.75 97.75 98.75 98.25 99.75 99.75
H-B 98.25 98.50 98.75 98.75 96.75 98.75 98.75 99.75 100.00
H-F 99.25 99.25 99.00 98.75 99.25 99.25 99.25 100.00 100.00
H-NRV 98.75 99.00 99.00 99.75 99.00 99.25 99.25 100.00 100.00
H-RB 98.25 98.25 98.25 99.00 99.75 99.75 99.25 100.00 100.00
H-ALL 97.75 99.25 99.00 99.00 99.25 99.25 99.75 99.75 100.00
S. D. 0.65 2.16 2.00 0.46 1.02 0.38 0.57 0.13 0.09
Table 2
CWRU FE Dataset (T2): Diagnostic performance in term of classification accuracy.

Class FD Load SVM (Widodo
and Yang,
2007)

DNN (Qi
et al., 2017)

DTL (Wen
et al., 2019)

DAFD (Lu
et al., 2017)

N2N (Sharma and
Verma, 2021)

EvoDCNN
(Sun et al.,
2020)

EvoN2N
(Sharma and
Verma, 2022)

GS-
EvoN2N

W. D. A. D. A.

H-IR-OR-B

7 mil
1 hp 88.12 96.69 96.56 97.94 98.94 98.94 99.60 100.00 100.00
2 hp 98.12 95.94 93.44 96.12 97.12 98.12 99.60 100.00 100.00
3 hp 99.10 98.75 98.75 98.44 99.44 99.44 99.70 100.00 100.00

14 mil
1 hp 99.10 94.75 96.88 97.19 99.19 99.67 100.00 100.00 100.00
2 hp 98.10 95.31 92.19 95.69 97.69 98.69 98.12 99.12 99.60
3 hp 99.25 96.88 94.69 97.62 99.33 98.62 98.44 98.84 100.00

21 mil
1 hp 96.88 86.56 84.69 89.62 95.62 96.62 93.75 98.75 100.00
2 hp 88.44 85.31 82.19 86.69 90.69 90.69 90.10 95.37 98.85
3 hp 92.19 86.56 79.38 88.06 91.06 92.06 92.81 95.81 98.81

S. D. 4.62 5.25 7.06 4.66 3.46 3.32 3.69 1.81 0.51
Table 3
CA for Target-2 & Target-3 Dataset and for very limited samples of Target-2 & Target-3 Dataset.

Class Data-
L.S.

SVM
(Widodo and
Yang, 2007)

DNN (Qi
et al., 2017)

DTL (Wen
et al., 2019)

DAFD (Lu
et al., 2017)

N2N (Sharma and
Verma, 2021)

EvoDCNN
(Sun et al.,
2020)

EvoN2N
(Sharma and
Verma, 2022)

GS-EvoN2N

W. D. A. D. A.

H-OR-IR

T3-L1 94.25 96.92 96.92 96.92 98.64 98.94 99.25 99.75 100.00
T3-L2 90.00 93.58 95.00 94.58 95.12 96.12 99.58 99.83 99.75
T3-L3 87.17 91.92 93.33 92.08 94.44 94.44 97.50 97.70 100.00
T3-L4 87.17 93.15 93.75 94.17 97.19 95.28 100.00 100.00 100.00
T4-L1 95.00 97.50 97.50 98.33 98.33 99.17 99.17 100.00 100.00
T4-L2 92.83 95.92 96.50 96.33 96.33 96.33 98.60 99.15 100.00
T4-L3 94.83 94.67 93.33 94.17 95.72 96.33 98.60 99.15 100.00
T4-L4 94.83 95.33 95.00 95.83 95.69 95.69 93.33 98.75 99.75

S. D. 3.41 1.92 1.65 1.95 1.50 1.68 2.13 0.79 0.10
4.5. Comparison and results

Since our method deals with fault diagnosis with NAS, the main
focus has been on finding the solution for faster selection of the best
DNN model for fault diagnosis. Therefore, we compare our results
with the baseline methods and the state-of-the-art methods used for
fault diagnosis. The state-of-the-art methods for intelligent fault diag-
nosis best reported in various literature are support vector machines
(SVM) (Widodo and Yang, 2007), deep neural network (DNN) (Qi
et al., 2017), deep transfer learning (DTL) based on sparse autoen-
coder (Wen et al., 2019), Deep neural network for domain Adaptation
in Fault Diagnosis (DAFD) (Lu et al., 2017), Net2Net without domain
adaptation (N2N_WDA) (Sharma and Verma, 2021), Net2Net with do-
main adaptation (N2N_DA) (Sharma and Verma, 2021), evolutionary
deep CNN (EvoDCNN) (Sun et al., 2020), and evolutionary Net2Net
(EvoN2N) (Sharma and Verma, 2022). The DNN, DTL, and DAFD are
trained with hidden sizes of (70−50−20). The initial and hyper param-
ters for EvoDCNN and EvoN2N are kept same as mentioned above.
he same dataset (T1, T2, T3, & T4) are used to train and test all these
ethods using the procedure suggested in the corresponding references

ited. The diagnostic performance in term of 𝐶𝐴 are tabulated in
ables 1, 2, & 3. The standard deviation (S.D.) of 𝐶𝐴 calculated over
he variation in the operating conditions is also tabulated to compare
he result deviation with the change in the operating conditions.
7

4.6. Ablation study

The main contribution of this research work is the guided-sampling
of population for the evolution of the network architecture. Model
architecture sampling for population and offspring generation requires
mean and variance terms that are produced by a reward-based con-
troller. The reward-based controller ensures that the mean and variance
are updated in the direction to obtain faster optimality. Therefore, the
ablation study to show the impact of the key parameters of the pro-
posed method on diagnostic performance is presented in the following
steps.

4.6.1. Effect of guided-sampling of population
If guided-sampling is absent in the algorithm, population has to

randomly initialized in the search space for offspring generation. Then,
the evolution process becomes a completely heuristic search, which
is the same as EvoN2N (Sharma and Verma, 2022). The performance
results for EvoN2N for the same dataset are provided in Tables 1,
2, 3. Also, the evolution of the best model at every 5th generation
has been presented in Table 4 with and without guided sampling. It
can be observed that without guided sampling (EvoN2N Sharma and
Verma, 2022) takes more number of generations to reach the best
model architecture. However, in both cases, the final models obtained
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Table 4
Evolution of best architecture (Hidden Layers and Nodes) at Every 5th Generation (CWRU FE, 7 mil FD, 1 hp load).

#Gen EvoN2N (No Guided-Sampling) (Sharma and Verma, 2022) GS-EvoN2N

Pop. Size = 50 Pop. Size = 100 Pop. Size = 50 Pop. Size = 100

Best Arch. % CA Best Arch. % CA Best Arch. % CA Best Arch. % CA

0 100-20 89.8 90-88-73 90 95-77-45 91.5 100-82-40 90.1
5 98-95-61 94.3 100-95-75-73-64–35 94.4 90-77-38 93.9 97-80-70-63 94.93
10 100-76-66 95.9 100–45 96.1 91-84-44 95.8 100-83-60-45 97.57
15 99-86-81-74 98.1 97-75-75-60 99.1 100-88-80-71 99.2 100-100-80-73 100
20 100-96-84-63 99.7 100-100-80-73 100 100-91-76-52 99.6 100-100-80-73 100
Fig. 6. TI in term of 𝐶𝐴 for (i) T1: Air Compressor dataset, (ii) T2: CWRU dataset,
(iii) T3: PBU dataset with single point fault, and (iv) T4: PBU dataset with distributed
fault.

Fig. 7. Confusion matrix for dataset T4-L1 (Table 3): class label {‘1’, ‘2’, ‘3’} represents
the class name {‘H’, ‘OR’, ‘IR’}.

are the same. The effect of guided sampling can be observed more
clearly from the classification accuracy curve shown in Fig. 8.

4.6.2. Effect of population size
Table 4 shows the architecture produced at various generation by

the two methods; the EvoN2N and the GS-EvoN2N for population size
50 and 100. It can be seen that neither of the algorithm converge fully
in 20 generations for population size of 50. However, with population
8

Fig. 8. Rise of 𝐶𝐴 curve of GS-EvoN2N and EvoN2N for Population Size = 100 (CWRU
FE, 7 mil FD, 1 hp load).

Fig. 9. Rise of 𝐶𝐴 curve of GS-EvoN2N and EvoN2N For Population Size = 50 (CWRU
FE, 7 mil FD, 1 hp load).

size = 100, both the algorithm converge fully to a model that provides
100% classification accuracy on the validation data. Therefore, small
population size may require more number of generations to converge or
may not converge. The rise of the accuracy curve for the evolutionary
architecture search with and without guided-sampling is shown in
Fig. 9. It can be observed that both the curves may converge to produce
100% accuracy for a higher number of generation.

4.6.3. Effect of number of generation
From Table 4 and accuracy curve shown in Fig. 8, it can be observed

that the proposed method takes about 12 epochs to reach to its optimal
point where as the evolution without guided-sampling takes about 18
epochs to reach to the optimal architecture. If the population size is
reduced by half, the number of generations required are significantly
increased.

4.7. Discussion

The diagnostic performances of the proposed method and the se-
lected state-of-the-art methods conclude the following observations.
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(i) The 𝐶𝐴 comparison in Tables 1, 2, & 3 reveal that diagnostic
performances are very much affected by the best architecture
selection. The DNN model with the best suitable architecture for
the given dataset can perform up to almost 100% 𝐶𝐴 while other
methods with pre-selected architecture fail to perform well.

(ii) Considering SVM (Widodo and Yang, 2007) as the baseline di-
agnostic method, We evaluate the transfer improvement (𝑇 𝐼) in
terms of average 𝐶𝐴 for the dataset T1, T2, T3, & T4 separately.
If the average 𝐶𝐴 is denoted as 𝐶𝐴, the 𝑇 𝐼 is defined as 𝑇 𝐼 =
𝐶𝐴−𝐶𝐴𝑏, where 𝐶𝐴𝑏 is the average 𝐶𝐴 by SVM. The 𝑇 𝐼 graph
shown in Fig. 6 shows the performance improvement of the
proposed framework compared to the state-of-the-art methods
and the baseline method ‘SVM’.

(iii) Fig. 7 demonstrates the classification performance by confusion
chart matrices for one of the dataset (T4-L1: Table 3). The
confusion matrices with blackened diagonal elements represent
the classifications with 100% accuracies. The confusion matrices
with gray shades are the methods with missed classifications.
All the test samples are correctly classified using the proposed
method GS-EvoN2N, therefore, the proposed method is capable
of selecting the best possible architecture that has almost 100%
diagnostic performance.

(iv) Fig. 8 shows the evolution of the best model for the proposed
GS-EvoN2N and EvoN2N (Sharma and Verma, 2022) with gen-
eration. The comparison of the rise of the curve reveals that
guided sampling helps the algorithm to attain optimality faster.
Therefore, the proposed method GS-EvoN2N requires fewer gen-
erations to converge to the global optima.

(v) Table 4 shows the evolution of the best architecture in every 5th
generation. It can be seen that the proposed GS-EvoN2N reached
its optimality before 15th generation much faster compared to
EvoN2N. Also, it can be observed that the best architecture may
be having larger or smaller size. The final best architecture has
a small size compared to what it was obtained at 5th generation.
Therefore, only increasing the size of the architecture cannot
perform better for fault diagnosis of industrial machines with
limited availability of training samples.

(vi) The comparison between EvoDCNN (Sun et al., 2020), EvoN2N
(Sharma and Verma, 2022), & the proposed GS-EvoN2N reveals
that the fully connected model (DNN) with the best architecture
is more suitable for fault diagnosis applications compared to the
CNN model in EvoDCNN (Sun et al., 2020) proposed for image
classification.

(vii) The time-series data classification by manually designed trans-
former models (Wen et al., 2023) may be very effective solution
for fault diagnosis problems due to their excellent capability
of capturing long-term dependencies. But, transformer models
require large number of training samples which may be not be
feasible for our case due to limited availability of the training
samples. Furthermore, the number of trainable parameters in
each transformer block with 768 hidden size would be much
more than the best model obtained in our case (100-100-80-73).

4.8. Complexity analysis

The worst complexities in one iteration of the entire algorithm 1
are contributed by (i) fitness evaluation of the DNN model and (ii)
the non-dominated sorting. The complexity of the fitness evaluation
of DNN is mainly contributed by parameter optimization by L-BFGS
which is 𝑂(𝑁𝐼 ∗ 𝑛2), where 𝑛&𝑁𝐼 be the total number of parame-
ters and number of iterations required to fine-tune the DNN model.
The non-dominated sorting algorithm has a complexity of 𝑂(𝑀𝑁2

𝑝 ),
where 𝑀 &𝑁2

𝑝 are the number of objectives and the population size,
respectively. Since 𝑀 is very small compared to 𝑁𝐼 , therefore, the
9

time complexity for GS-EvoN2N with population size 𝑁𝑝 is given by
𝑂(𝑁𝐼𝑁𝑝𝑛2), where 𝑛 = total number of parameters in one model and
𝐼 = number of iterations taken for model training.

Since, the fitness evaluation adopted in the proposed framework
se transfer of knowledge of best model from the previous generation,
he fitness evaluation gets faster and cheaper with generation. The
arameter optimization by L-BFGS requires lesser number of epochs
s the evolution proceeds towards its optimality. Therefore, carbon
ootprint for the proposed framework is less than the state-of-the-art
volutionary NAS. Furthermore, since the time-series recorded signals
re segmented as small-size samples, fully connected network having
rchitecture like (100-100-80-73) performs well, the embedded devices
ith modern CPUs would be sufficient for real-time deployment.

. Conclusions

In this article, we have formulated a guided sampling-based evo-
utionary algorithm for the search of DNN architecture. The proposed
ramework uses the concept of policy gradient to sample the new popu-
ation to force the evolution towards the maximization of classification
erformance. The classification accuracies of the best model in each
eneration are used as a reward to update the policy parameters. The
olicy controller generates the mean and variance term to sample the
ew architecture for better performance. The best model obtained in
ach generation is also transferred to the next generation to initialize
he model evaluation using the concept of net2net transformation. The
ntire algorithm becomes faster to attain the global maxima. Therefore,
his method is very good in terms of faster evolution and faster conver-
ence while ensuring global convergence. The validation using dataset
nder various cases from Air Compressor data, CWRU data, and PBU
ata proves that the proposed framework is capable of obtaining the
est model to get diagnostic performance almost up to 100% accuracy.
his method can also be used for the architecture optimization of the
NN model with image classification or object detection applications.
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